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ABSTRACT

Context. The present IAU model of precession, like its predecessors, is given as a set of polynomial approximations of various pre-
cession parameters intended for high-accuracy applications over a limited time span. Earlier comparisons with numerical integrations
have shown that this model is valid only for a few centuries around the basic epoch, J2000.0, while for more distant epochs it rapidly
diverges from the numerical solution. In our preceding studies we also obtained preliminary developments for the precessional con-
tribution to the motion of the equator: coordinates X,Y of the precessing pole and precession parameters ψA, ωA, suitable for use over
long time intervals.
Aims. The goal of the present paper is to obtain upgraded developments for various sets of precession angles that would fit modern
observations near J2000.0 and at the same time fit numerical integration of the motions of solar system bodies on scales of several
thousand centuries.
Methods. We used the IAU 2006 solutions to represent the precession of the ecliptic and of the equator close to J2000.0 and, for
more distant epochs, a numerical integration using the Mercury 6 package and solutions by Laskar et al. (1993, A&A, 270, 522)
with upgraded initial conditions and constants to represent the ecliptic, and general precession and obliquity, respectively. From them,
different precession parameters were calculated in the interval ±200 millennia from J2000.0, and analytical expressions are found that
provide a good fit for the whole interval.
Results. Series for the various precessional parameters, comprising a cubic polynomial plus from 8 to 14 periodic terms, are derived
that allow precession to be computed with an accuracy comparable to IAU 2006 around the central epoch J2000.0, a few arcseconds
throughout the historical period, and a few tenths of a degree at the ends of the ±200 millennia time span. Computer algorithms are
provided that compute the ecliptic and mean equator poles and the precession matrix.
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1. Introduction

Precession models are designed for two different phenomena:
the precession of the ecliptic due to planetary perturbations and
the precession of the equator due to the luni-solar and planetary
torques on the oblate Earth. In both cases, precession represents
the secular part of the motion. The term “secular” will be used
throughout the paper to designate quasi periodic motions with
very long periods. The motion of the Celestial Intermediate Pole
(CIP), or equivalently of the equator of the CIP, with respect
to the Geocentric Celestial Reference System (GCRS), is com-
posed of precession and nutation, which are differentiated by a
convention. Here we define the precession of the equator as that
part of the motion of the equator that covers periods longer than
100 centuries, while terms of shorter periods are presumed to be
included in the nutation.

In this connection, it is necessary to mention that the
IAU 2000 model of nutation includes several terms with longer
periods: 105 cy, 209 cy for the luni-solar terms and 933 cy,
150 cy, 129 cy, 113 cy for the planetary terms. The amplitudes
of these terms are, however, very small (less than 4 mas for one

� The Appendix containing the computer code is available in elec-
tronic form at http://www.aanda.org

term and less than 0.1 mas for the others), much smaller than the
amplitudes of precession with similar periods.

Similarly, the osculating elements of the Earth-Moon
barycenter (EMB) orbit are quasi-periodic functions of the time
that can be expressed in the form of Poisson series whose ar-
guments are linear combinations of the mean planetary longi-
tudes. Here we define the precession of the ecliptic as being the
secularly-moving ecliptic pole (i.e. mean EMB) orbital angular
momentum) vector in a fixed ecliptic frame. The IAU 2006 pre-
cession of the ecliptic was computed as the part of the motion
of the ecliptic covering periods longer than 300 centuries, while
shorter ones are presumed to be included in the periodic compo-
nent of the ecliptic motion. Almost all models of precession in
use, including the most recent one, IAU 2006 (Capitaine et al.
2003; Hilton et al. 2006), are expressed in terms of polynomial
developments of all the various precession parameters, which
are intended for high-accuracy applications over a time span of
a few centuries.

This paper is a continuation of our preceding studies
(Vondrák et al. 2009, 2011), in which we used comparisons
with numerical integrations to show that the IAU 2006 model
is usable only for a limited time interval (depending on the
parameterization used, as short as a few centuries around the
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epoch J2000.0), and its errors rapidly increase with longer time
spans. An independent comparison by Fienga et al. (2008) of
IAU 2006 with the numerical INPOP06 solution for the motion
of the Earth’s axis over a few millennia shows discrepancies in-
creasing from less than 0.2′′ to about 3′′ between −1 to −5 mil-
lennia from J2000.0. In reality, precession represents a rather
complicated, very long-periodic process, whose periods are hun-
dreds of centuries long. This behavior can clearly be seen in nu-
merically integrated equations of motion of the Earth in the solar
system and of its rotation.

The goal of the present study is to find relatively simple ex-
pressions for all precession parameters (listed, e.g., by Hilton
et al. 2006), the primary ones being the orientation parameters
of the secularly-moving ecliptic and equator poles with respect
to a fixed celestial frame. We require that the accuracy of these
expressions is comparable to the IAU 2006 model near the epoch
J2000.0, while lower accuracy is allowed outside the interval
±1000 years, gradually increasing up to several arcminutes at
the extreme epochs ±200 millennia. Thus the new expressions
should be more universal, serving both for modern applications
and a number of problems which require a precession model
valid over long time intervals, in particular archaeoastronomy,
e.g. predicting star alignments with ancient monuments, or cal-
endrical studies involving the seasons.

2. Numerical representation of precession

2.1. Precession of the ecliptic

The numerical representation of the precession of the ecliptic
was obtained as follows:

a) Integration of the solar system motion was performed us-
ing the Mercury 6 package (Chambers 1999), in the interval
±200 millennia from J2000.0 with a 1-day step. Mercury 6
is a general-purpose software package designed to calcu-
late the orbital evolution of objects moving in the gravita-
tional field of a large central body, such as the motion of
the planets or the Earth-Moon barycenter in the solar sys-
tem. The numerical integrator is based on a second-order
mixed-variable symplectic (MVS) algorithm incorporating
simple symplectic correctors. To compute the orbital evo-
lution of the Earth-Moon barycenter we used the values of
planetary masses and initial positions/velocities of the “big”
bodies of the solar system as recommended by Chambers
in Mercury 6. Only the Sun, Mercury, Venus, Earth-Moon
barycenter, Mars, Jupiter, Saturn, Uranus, Neptune and Pluto
were taken into account. Since the Mercury 6 package does
not include general relativity, it was not applied. The com-
parison (see below) with the solution of Laskar et al. (1993),
which includes relativity, demonstrated that it has no visible
consequence on the computation of PA and QA.
The integration was performed for the precession parameters
PA = sin πA sinΠA, QA = sin πA cosΠA, which represent
the orientation parameters of the secularly-moving ecliptic
pole. The reference system in which these parameters are
described is the mean equinox and ecliptic at J2000.0. The
elements of the EMB orbit were then smoothed and interpo-
lated with a 100-year step in order to retain only variations
with periods longer than 3 millennia.
The values of PA, QA were then checked against the results
of Laskar (1993), who lists the values p = sin i/2 sinΩ,
q = sin i/2 cosΩ in 1000-year steps from −20 to +10 Myr.
We used the obvious relations PA = 2p

√
1 − p2 − q2,

QA = 2q
√

1 − p2 − q2 and interpolated the values, using a
cubic spline function, at 100-year intervals. The comparison
displays very good consistency between the two series – the
differences are only a few milliarcseconds near the epoch
J2000.0, reaching 20 arcseconds for the most distant epochs.

b) Integrated values for PA and QA were replaced, inside the
interval ±1000 years around J2000.0, with the values com-
puted from the IAU 2006 model for the precession of the
ecliptic which, in turn, is based on the semi-analytical the-
ory VSOP87 (Bretagnon & Francou 1988) and JPL DE406
(Standish 1998) ephemerides.

2.2. Precession of the equator with respect to the ecliptic
of date

The precession of the equator was represented by the general
precession in longitude, pA, and mean obliquity of date, εA,
which are the orientation angles of the mean equator of date with
respect to the ecliptic of date.

The numerical representation of the precession of the equator
was obtained as follows:

a) The numerically integrated solution La93 by Laskar et al.
(1993) of pA and εA, available in the interval ±1 million
years with a 1000-year step, was interpolated to give values
in 100-year steps.
The La93 solution for these precession quantities was ob-
tained from a numerical integration of the precession equa-
tions (derived from the equations of the rigid Earth theory)
based on the La93 precession of the ecliptic and on nu-
merical values adopted at the reference epoch for the mean
obliquity of the ecliptic, ε0, the speed of precession, and the
geodesic precession. The expression for the general preces-
sion, pA, combines the precession in longitude of the equator
and the precession of the ecliptic, the former being a function
of the Earth’s dynamical flattening, of the masses of the Sun,
the Earth and the Moon and other constants related to the or-
bital elements of the Moon and the EMB. The La93 solution
for the quantity (εA − ε0) results from the combined effect of
the general precession and precession of the ecliptic.
Note that although an improved version of the La93 pre-
cession solution has been obtained by Laskar et al. (2004),
intended for representing variations over several Myr, the
differences between the La2004 and La93 solutions are in-
significant in the interval ±200 millennia from J2000.0. As
the form in which the La93 solution is available is the most
suitable for the purpose of our work, this solution was pre-
ferred.
Several corrections were applied to the La93 nominal solu-
tion in order to make it consistent with the constants and
models upon which the IAU 2006 precession is based:

– a linear correction of −0.295767′′/cy to pA to account for
the slightly different La93 value for the dynamical ellip-
ticity of the Earth (HD = 0.00328005) compared with
the IAU 2006 value (HD = 0.003273795), as well as for
other small differences between the La93 and IAU 2006
dynamical models used in the precession equations;

– a quadratic correction of −0.0071′′/cy2 to pA to account
for effects considered in the IAU 2006 model and not in
the La93 nominal solution, namely (i) the effect of the
time rate of change, dJ2/dt = −3.001 × 10−9 cy−1, in
the dynamical form factor, (ii) the J2 and planetary tilt
effects and (iii) the tidal effects, from Williams (1994);
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Fig. 1. Precession parameters.

– a constant correction of −0.042′′ to εA to account for
the slightly different value for the obliquity between the
IAU 2006 and La93 values;

– a linear correction of −0.02575′′/cy to εA, to account for
the IAU 2006 value for the obliquity rate (i.e. the rate
of precession in obliquity of the equator with respect to
the ecliptic of epoch), which was zero in the La93 solu-
tion; the obliquity rate is due to the planetary tilt effect,
the direct planetary effect and the tidal effect in obliquity
(Williams 1994).

The corrections just described can be summarized by Eq. (1);
the numerical values of these total corrections for the dates
of the numerical La93 solution were used to correct the latter.

ΔpA = −0.295767′′T − 0.0071′′T 2, (1)

ΔεA = −0.042′′ − 0.02575′′T.

The parameter T used in the above expression, as well
as in those below, is the elapsed time in Julian cen-
turies since J2000.0 TT, defined by: T = (TT −
2000 January 1d 12h TT)/36525, with TT in days.

b) Inside the interval ±1000 years around J2000.0, the inte-
grated values for pA and εA were replaced with the values
computed from the IAU 2006 expressions of these quantities.

3. Calculation of the precession parameters

From the values of the precession parameters PA, QA, pA and εA,
different precession parameters were calculated in the interval
±200 millennia from J2000.0.

The relations of the four above mentioned parameters to the
other ones describing precession are shown in Fig. 1. To calcu-
late them, we obtain first the auxiliary angles α, β, μ from the
triangle ΥΥoN:

cos β = cosΠA cos(ΠA + pA) + sinΠA sin(ΠA + pA) cosπA,

sin β sinα = sinΠA sin πA, (2)

sin β cosα = cosΠA sin(ΠA + pA) − sinΠA cos(ΠA + pA) cosπA,

sin β sin μ = sin(ΠA + pA) sin πA,

sin β cos μ = sinΠA cos(ΠA + pA) − cosΠA sin(ΠA + pA) cosπA,

then the angles η, δ by solving the triangle ΥΥoPt:

cos η = sin β sin(εA + α),

sin η sin δ = cos(εA + α), (3)

sin η cos δ = − cos β sin(εA + α)

and, from triangle ΥoPtPo, we get the precession parameters
θA, ζA:

cos θA = − sin η sin(μ + δ − ε◦),
sin θA sin ζA = − sin η cos(μ + δ − ε◦), (4)

sin θA cos ζA = cos η.

From the triangle PoPtCo the precession parameters ωA, ψA then
follow:

cosωA = cos ε◦ cos θA + sin ε◦ sin θA sin ζA,

sinωA sinψA = sin θA cos ζA, (5)

sinωA cosψA = sin ε◦ cos θA − cos ε◦ sin θA sin ζA,

and from the triangles PtCCo, PoPtCo the parameters χA, zA:

sin εA sin χA = PA cosψA + QA sinψA,

sin εA cosχA = cos πA sinωA

− (PA sinψA − QA cosψA) cosωA,

sin θA sin(zA + χA) = sinωA cos ε◦ − cosωA sin ε◦ cosψA, (6)

sin θA cos(zA + χA) = sin ε◦ sinψA.

Instead of parameters θA, zA, ζA we use their combinations XA =
sin θA cos ζA, YA = − sin θA sin ζA, VA = sin θA sin zA, WA =
sin θA cos zA that, unlike the former, are continuous functions of
time. θA, ζA and zA exhibit rather large discontinuities (of about
94◦ for θA, 180◦ for ζA and zA) at intervals that are not quite reg-
ular: there is a change of sign approximately each 26 000 years.
This would make the long-term analytical approximation of
these parameters extremely difficult.

Note that XA and YA are the precession part of the coordi-
nates X, Y of the CIP unit vector in the GCRS, or equivalently
the coordinates of the secularly-moving CIP with respect to the
mean equator and equinox at J2000.0, while WA and VA are the
coordinates of the mean pole at J2000.0 with respect to the mean
equator and equinox of date.

There are three more parameters ϕ, γ and ψ that can be cal-
culated from the triangles PoCoC and PoCPt :

cosϕ = cos πA cos εo − QA sin εo,

sin ϕ sin γ = PA,

sin ϕ cosγ = sin εo cosπA + QA cos εo,

sinϕ sinψ = WA, (7)

sin ϕ cosψ = sin εA cos θA − VA cos εA.

We used Eqs. (2) through (7) to calculate time series of all the
above precession parameters in the interval ±2000 cy with 1-cy
steps. It is important to note that all these parameters are referred
to the reference frame defined by the mean equator and equinox
of standard epoch J2000.0, not to the slightly-offset GCRS (both
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pole and origin of the GCRS are not exactly identical with the
pole and equinox of J2000.0; the offset, called “frame bias” is
an unintended difference in orientation of about 23 mas between
both frames – see subroutine ltp_PBMAT in the Appendix). Note
also that the precession quantities are completely determined by
the motions of the ecliptic pole and the equator pole, represented
by the precession parameters PA,QA for the ecliptic and XA, YA
for the equator. These four quantities will therefore be consid-
ered in the following as being the “primary precession parame-
ters”.

4. Long term analytical approximations

4.1. General method

To find the long-term analytical approximation of each of the
precession parameters, we performed the following steps:

– spectral analysis of integrated values to find hidden period-
icities, using the Vaníček (1969) method, based on least-
squares approximation, as modified by Vondrák (1977);

– periods found were compared with those found by Laskar
et al. (1993, 2004) and where there was a match Laskar’s
values were adopted;

– sine/cosine amplitudes of the terms found in the preceding
step, plus cubic polynomials, were fitted to the numerical
integration, using a least-squares method. The weights used
in the fit were chosen to avoid significant disagreement with
IAU 2006 in its region of applicability while remaining con-
sistent with the long-term character of the numerical inte-
gration: very high close to J2000.0 (equal to 104 inside the
interval ±100 yr), decreasing quadratically with time (equal
to 1/T 2 outside the interval ±100 yr);

– small additional corrections were then applied to the constant
and linear terms to ensure that the function value and its first
derivative at the epoch J2000.0 were identical with those of
the IAU 2006 model.

The method used leads to results that are not unique; there are
strong correlations between the pairs of estimated sine/cosine
terms (often due to close periods that cannot be resolved in a
given time interval), so that a tiny change of a period brings
about rather large changes of all estimated amplitudes. However,
the function values computed from different models within the
interval ±200 millennia from J2000.0 are almost insensitive to
these changes. One must keep in mind that the model is valid
only within this interval, whereas outside the errors diverge
rapidly. Here and in the following, these long-term expressions
will be called “long-term model” or “new model”, with the un-
derstanding that the model is empirical, not physical.

Below we present long-term expressions for all the preces-
sion parameters. In these models, T is the time in Julian cen-
turies running from J2000.0, as defined in Sect. 2.2. Periodic
terms, whose cosine and sine amplitudes in arcseconds C, S and
periods in centuries P are given in corresponding tables, have
the general form

∑
(Ci cos 2πT/Pi + S i sin 2πT/Pi). In all these

tables, according to Laskar et al. (1993), gi and si (i = 1, 6) de-
note the secular frequencies of the perihelions and nodes of the
first six planets of the solar system, respectively, while p desig-
nates the main precession frequency, νk secular frequencies of
the EMB orbital motion, and σk other frequencies of the La93
solution. Their values are provided in Tables 3 and 5 of Laskar
et al. (2004) and in Table 2 of Laskar et al. (1993).

Comparisons of the new model with integrated values and
the IAU 2006 model for all derived parameters are graphically

Fig. 2. Long-term model of precession parameters PA,QA – new model
and integrated values (solid), IAU2006 (dashed).

Table 1. Periodic terms in PA,QA.

Term C/S PA[′′] QA[′′] P[cy]
σ3 C1 –5486.751211 –684.661560 708.15

S 1 667.666730 –5523.863691
−s1 C2 –17.127623 2446.283880 2309.00

S 2 –2354.886252 –549.747450
C3 –617.517403 399.671049 1620.00
S 3 –428.152441 –310.998056

−s6 C4 413.442940 –356.652376 492.20
S 4 376.202861 421.535876
C5 78.614193 –186.387003 1183.00
S 5 184.778874 –36.776172
C6 –180.732815 –316.800070 622.00
S 6 335.321713 –145.278396
C7 –87.676083 198.296071 882.00
S 7 –185.138669 –34.744450
C8 46.140315 101.135679 547.00
S 8 –120.972830 22.885731

depicted in Figs. 2 through 9. In all these figures, the new model
is represented as a solid line, while the values corresponding to
the numerical integration values described in Sect. 2 are rep-
resented as a dotted line. We note that, in all cases, the two
curves are so close that they are graphically indistinguishable
in the whole interval; they appear as a single line. On the other
hand, the IAU 2006 model (dashed line) fits well both to the in-
tegrated values and to the new model near the epoch J2000.0,
but it rapidly diverges from both for more distant epochs.

4.2. Primary precession parameters

The long-term expressions for the precession of the ecliptic, PA,
QA, are given as

PA = 5851.607687− 0.1189000T

−0.00028913T 2 + 101 × 10−9T 3 +
∑

P,

QA = −1600.886300+ 1.1689818T (8)

−0.00000020T 2 − 437 × 10−9T 3 +
∑

Q,

where the cosine/sine amplitudes of the periodic parts
∑

P,
∑

Q
are given in Table 1. Names of some of the terms in Col. 1 come
from Laskar (1993, 2004). The comparisons of the long-term
models of the precession of the ecliptic, PA (top), QA (bottom)
with integrated values and the IAU 2006 model are shown in
Fig. 2.
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Fig. 3. Long-term model of precession parameters XA, YA – new model
and integrated values (solid), IAU2006 (dashed).

Table 2. Periodic terms in XA, YA.

Term C/S XA[′′] YA[′′] P[cy]
p C1 –819.940624 75004.344875 256.75

S 1 81491.287984 1558.515853
−σ3 C2 –8444.676815 624.033993 708.15

S 2 787.163481 7774.939698
p − g2 + g5 C3 2600.009459 1251.136893 274.20

S 3 1251.296102 –2219.534038
p + g2 − g5 C4 2755.175630 –1102.212834 241.45

S 4 –1257.950837 –2523.969396
−s1 C5 –167.659835 –2660.664980 2309.00

S 5 –2966.799730 247.850422
−s6 C6 871.855056 699.291817 492.20

S 6 639.744522 –846.485643
p + s4 C7 44.769698 153.167220 396.10

S 7 131.600209 –1393.124055
p + s1 C8 –512.313065 –950.865637 288.90

S 8 –445.040117 368.526116
p − s1 C9 –819.415595 499.754645 231.10

S 9 584.522874 749.045012
C10 –538.071099 –145.188210 1610.00
S 10 –89.756563 444.704518
C11 –189.793622 558.116553 620.00
S 11 524.429630 235.934465

2p + s3 C12 –402.922932 –23.923029 157.87
S 12 –13.549067 374.049623
C13 179.516345 –165.405086 220.30
S 13 –210.157124 –171.330180
C14 –9.814756 9.344131 1200.00
S 14 –44.919798 –22.899655

The long-term expressions for the precession angles XA =
sin θA cos ζA, YA = − sin θA sin ζA, are given as

XA = 5453.282155+ 0.4252841T

−0.00037173T 2 − 152 × 10−9T 3 +
∑

X ,

YA = −73750.930350− 0.7675452T (9)

−0.00018725T 2 + 231 × 10−9T 3 +
∑

Y ,

where the cosine/sine amplitudes of the periodic parts
∑

X ,
∑

Y
are given in Table 2. The comparisons of the long-term models of
precession angles XA(top) and YA (bottom) are shown in Fig. 3.

As PA,QA and XA, YA represent direction cosines, it is easy
to understand that Eqs. (8) and (9), having small coefficients in T
and T 2, are more appropriate expressions for representing those
precession quantities in the long term than the usual IAU poly-
nomial of times with large coefficients in T and T 2.

Fig. 4. Long-term model of precession parameters pA, εA – new model
and integrated values (solid), IAU2006 (dashed).

Table 3. Periodic terms in pA, εA.

Term C/S pA[′′] εA[′′] P[cy]
p + s3 C1 –6908.287473 753.872780 409.90

S 1 –2845.175469 –1704.720302
p + s4 C2 –3198.706291 –247.805823 396.15

S 2 449.844989 –862.308358
p + s6 C3 1453.674527 379.471484 537.22

S 3 –1255.915323 447.832178
p + ν6 C4 –857.748557 –53.880558 402.90

S 4 886.736783 –889.571909
p + ν10 C5 1173.231614 –90.109153 417.15

S 5 418.887514 190.402846
p + s1 C6 –156.981465 –353.600190 288.92

S 6 997.912441 –56.564991
C7 371.836550 –63.115353 4043.00
S 7 –240.979710 –296.222622
C8 –216.619040 –28.248187 306.00
S 8 76.541307 –75.859952
C9 193.691479 17.703387 277.00
S 9 –36.788069 67.473503
C10 11.891524 38.911307 203.00
S 10 –170.964086 3.014055

4.3. Other precession parameters

Similarly, the long-term expressions for the general precession
and obliquity, pA, εA, are given as

pA = 8134.017132+ 5043.0520035T

−0.00710733T 2 + 271 × 10−9T 3 +
∑

p,

εA = 84028.206305+ 0.3624445T (10)

−0.00004039T 2 − 110 × 10−9T 3 +
∑
ε,

where the cosine/sine amplitudes of the periodic parts
∑

p,
∑
ε

are given in Table 3. The comparisons of the long-term models of
general precession pA (reduced by a conventional rate 5045′′/cy
for clarity) and obliquity εA (bottom) are shown in Fig. 4.

Long-term approximations of the precession angles ψA, ωA,
are

ψA = 8473.343527+ 5042.7980307T

−0.00740913T 2 + 289 × 10−9T 3 +
∑
ψ,

ωA = 84283.175915− 0.4436568T (11)

+0.00000146T 2 + 151 × 10−9T 3 +
∑
ω,

where the cosine/sine amplitudes of the periodic parts
∑
ψ,
∑
ω

are given in Table 4. The comparison of the long-term models
with integrated and IAU 2006 values of precession angles ψA
(top, again reduced by a conventional rate 5045′′/cy for clarity)
and obliquity ωA (bottom) are shown in Fig. 5.
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Fig. 5. Long-term model of precession parameters ψA, ωA – new model
and integrated values (solid), IAU2006 (dashed).

Table 4. Periodic terms in ψA, ωA.

Term C/S ψA[′′] ωA[′′] P[cy]
p + ν6 C1 –22206.325946 1267.727824 402.90

S 1 –3243.236469 –8571.476251
p C2 12236.649447 1702.324248 256.75

S 2 –3969.723769 5309.796459
C3 –1589.008343 –2970.553839 292.00
S 3 7099.207893 –610.393953

p + s6 C4 2482.103195 693.790312 537.22
S 4 –1903.696711 923.201931

p + g2 − g5 C5 150.322920 –14.724451 241.45
S 5 146.435014 3.759055
C6 –13.632066 –516.649401 375.22
S 6 1300.630106 –40.691114

2p + s3 C7 389.437420 –356.794454 157.87
S 7 1727.498039 80.437484

p − g2 + g5 C8 2031.433792 –129.552058 274.20
S 8 299.854055 807.300668
C9 363.748303 256.129314 203.00
S 9 –1217.125982 83.712326
C10 –896.747562 190.266114 440.00
S 10 –471.367487 –368.654854
C11 –926.995700 95.103991 170.72
S 11 –441.682145 –191.881064
C12 37.070667 –332.907067 713.37
S 12 –86.169171 –4.263770
C13 –597.682468 131.337633 313.00
S 13 –308.320429 –270.353691
C14 66.282812 82.731919 128.38
S 14 –422.815629 11.602861

Long-term expressions for the precession angles VA =
sin θA sin zA, WA = sin θA cos zA, are given as

VA = 75259.595326+ 0.0461349T

−0.00005550T 2 − 80 × 10−9T 3 +
∑

V ,

WA = 26.518159− 0.0591007T (12)

−0.00002551T 2 + 36 × 10−9T 3 +
∑

W ,

where the cosine/sine amplitudes of the periodic parts
∑

V ,
∑

W
are given in Table 5. The comparisons of the long-term models of
precession angles VA (top) and WA (bottom) are shown in Fig. 6.

The parameter χA is approximated as

χA = −19.657270+ 0.0790159T (13)

+0.00001472T 2 − 61 × 10−9T 3 +
∑
χ,

where the cosine/sine amplitudes of the periodic part
∑
χ are

given in Table 6. The comparison of the long-term model of pre-
cession angle χA is shown in Fig. 7.

Table 5. Periodic terms in VA, WA.

Term C/S VA[′′] WA[′′] P[cy]
p C1 –73711.656479 4107.948923 256.75

S 1 3740.469844 80317.421541
p + ν6 C2 1338.703810 –5212.021439 402.90

S 2 –7619.864469 –973.964881
C3 –2102.113931 –1161.734038 292.00
S 3 –1168.868697 1980.130219

p − g2 + g5 C4 –1237.679154 3288.125810 274.20
S 4 3101.092117 1315.324568

p + g2 − g5 C5 1031.024249 2684.081582 241.45
S 5 2474.428418 –1144.800451

2p + s3 C6 221.209559 –1625.788259 157.87
S 6 –1699.410673 –213.158325

−σ3 C7 –130.642468 –1920.032088 708.15
S 7 –634.420997 357.375148

−s1 C8 –335.984247 –113.715048 2309.00
S 8 –72.018405 –156.067912

p + s6 C9 467.533287 594.562037 537.22
S 9 843.007092 –70.507850

p − s1 C10 –226.324142 –643.236992 231.10
S 10 –581.939534 270.980920
C11 –765.341723 153.070947 375.22
S 11 241.809012 643.379879

2p + s3 C12 368.572745 259.200239 175.92
S 12 262.586453 –334.222195
C13 –374.355333 –334.555555 153.70
S 13 –358.994566 350.682234
C14 197.458502 –102.424278 347.23
S 14 –133.002693 –167.044988

Fig. 6. Long-term model of precession parameters VA,WA – new model
and integrated values (solid), IAU2006 (dashed).

Fig. 7. Long-term model of precession parameter χA – new model and
integrated values (solid), IAU2006 (dashed).

The long-term expressions for precession parameters ϕ, γ are

ϕ = 82927.719123+ 1.7209261T

+0.00022150T 2 − 713 × 10−9T 3 +
∑
ϕ,

γ = 15692.442005+ 1.6593090T (14)

−0.00179587T 2 − 746 × 10−9T 3 +
∑
γ,

where the cosine/sine amplitudes of the periodic parts
∑
ϕ,
∑
γ

are given in Table 7. The comparisons of the long-term models
of precession parameters ϕ and γ are illustrated in Fig. 8.
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Table 6. Periodic terms in χA.

Term C/S χA[′′] P[cy]
p + ν6 C1 –13765.924050 402.90

S 1 –2206.967126
p C2 13511.858383 256.75

S 2 –4186.752711
C3 –1455.229106 292.00
S 3 6737.949677

p + s6 C4 1054.394467 537.22
S 4 –856.922846
C5 –112.300144 375.22
S 5 957.149088

2p + s3 C6 202.769908 157.87
S 6 1709.440735

p − g2 + g5 C7 1936.050095 274.20
S 7 154.425505
C8 327.517465 202.00
S 8 –1049.071786
C9 –655.484214 440.00
S 9 –243.520976
C10 –891.898637 170.72
S 10 –406.539008
C11 –494.780332 315.00
S 11 –301.504189
C12 585.492621 136.32
S 12 41.348740
C13 –333.322021 128.38
S 13 –446.656435
C14 110.512834 490.00
S 14 142.525186

Table 7. Periodic terms in ϕ, γ.

Term C/S ϕ[′′] γ[′′] P[cy]
−σ3 C1 –833.806815 –14495.564540 708.15

S 1 –5526.951704 2257.804647
−s1 C2 2823.884629 –2167.091026 2309.00

S 2 –1212.834872 –7697.230957
−s6 C3 –561.517371 1899.045700 492.20

S 3 490.770010 997.239685
C4 12.512328 –894.791221 1183.00
S 4 –232.035721 271.082273
C5 –545.283996 329.762564 622.00
S 5 –52.307734 1209.810784
C6 76.426007 –261.214037 354.00
S 6 –48.151211 –328.902881
C7 26.817957 487.932928 973.00
S 7 –9.550134 –288.228510

p + s6 C8 369.908364 –290.122051 537.22
S 8 40.213499 –675.692962
C9 143.346762 –515.145728 448.00
S 9 –32.637763 –110.229138

p + ν6 C10 –58.600988 214.745407 402.90
S 10 13.262332 36.320865

The last parameter ψ (not to be confused with a different
parameter ψA, see Fig. 1) is approximated as

ψ = 22896.886816+ 5043.9709002T (15)

−0.00909406T 2 − 167 × 10−9T 3 +
∑
ψ,

where the cosine/sine amplitudes of the periodic part
∑
ψ are

given in Table 8. The comparison of the long-term model of pre-
cession angle ψ, with a nominal reduction by 5045′′/cy, is shown
in Fig. 9.

Fig. 8. Long-term model of precession parameters ϕ, γ – new model and
integrated values (solid), IAU2006 (dashed).

Fig. 9. Long-term model of precession parameter ψ – new model and
integrated values (solid), IAU2006 (dashed).

Table 8. Periodic terms in ψ.

Term C/S ψ[′′] P[cy]
−σ3 C1 –13340.687483 708.15

S 1 1892.926477
p + ν6 C2 –9099.125382 402.90

S 2 –566.489736
−s1 C3 –1989.898246 2309.00

S 3 –6961.864976
p + s6 C4 1093.486320 537.22

S 4 –2285.515288
−s6 C5 1905.509931 492.22

S 5 1526.292737
C6 –1337.274656 1144.00
S 6 337.799534
C7 –259.922484 292.00
S 7 1090.851596
C8 358.950401 622.00
S 8 1337.010368
C9 –1009.702849 440.00
S 9 –972.273544

p − g2 + g5 C10 187.487948 274.20
S 10 70.798210
C11 –271.194584 356.00
S 11 –293.382950
C12 –131.629975 319.00
S 12 –87.550070
C13 11.546954 202.00
S 13 –175.815418
C14 985.567290 1002.00
S 14 –232.712726

5. Precession matrix, and parameterization options

There are several ways to compute the precession matrix P,
which is used to transform the rectangular coordinates of a celes-
tial target from the coordinate system based upon the mean equa-
tor and equinox of epoch J2000.0 to that of an arbitrary date. We
can use combinations of various parameters to do this; the dif-
ferent possibilities are discussed by Hilton et al. (2006). These
possibilities include a form of the matrix that refers right ascen-
sions to a point of the mean equator of date that is independent
of the precession of the equinox (see Sect. 5.5).
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5.1. Matrix based on the equatorial precession parameters

The classical parameterization of the precession matrix (Lieske
et al. 1977) is obtained by a sequence of three rotations: by −ζA
(around the z-axis), θA (around the new position of the y-axis),
and −zA (around the new position of the z-axis):

P = R3(−zA)R2(θA)R3(−ζA), (16)

where Ri stands for the rotation matrix around the ith axis. Thus
the individual elements of P are given as

P11 = cos zA cos θA cos ζA − sin zA sin ζA,

P12 = − cos zA cos θA sin ζA − sin zA cos ζA,

P13 = − cos zA sin θA, (17)

P21 = sin zA cos θA cos ζA + cos zA sin ζA,

P22 = − sin zA cos θA sin ζA + cos zA cos ζA,

P23 = − sin zA sin θA,

P31 = sin θA cos ζA,

P32 = − sin θA sin ζA,

P33 = cos θA.

As mentioned earlier (Sect. 2) the properties of the three angles
make the development of long-term series problematical. These
difficulties are avoided by instead re-expressing the matrix ele-
ments in terms of the angles VA, WA, XA and YA:

P11 = (XAWAZA + YAVA) /r2,

P12 = (YAWAZA − XAVA) /r2,

P13 = −WA, (18)

P21 = (XAVAZA − YAWA) /r2,

P22 = (YAVAZA + XAWA) /r2,

P23 = −VA,

P31 = XA,

P32 = YA,

P33 = ZA,

where the developments of XA, YA and VA, WA are given by (9)
and (12), respectively, r2 = X2

A + Y2
A and ZA = (1 − r2)1/2.

An obvious disadvantage of this parameterization is the sin-
gularity at the epoch J2000.0, when XA = YA = VA = WA =
r2 = 0; in this special case, P is the identity matrix.

5.2. Matrix using the precession of the equator relative
to the fixed ecliptic

The parameterization used e.g. by Capitaine et al. (2003) pro-
vides a clear separation between the precession of the equator
and precession of the ecliptic, by using a sequence of four rota-
tions: around the x-axis by ε0, around the z-axis by −ψA, around
the x-axis by −ωA, and around the z-axis by χA (the first three
describing the precession of the equator with respect to the fixed
ecliptic, the last one precession of the ecliptic), i.e.

P = R3(χA)R1(−ωA)R3(−ψA)R1(ε0). (19)

The angle ε0 = 84 381.406′′; the remaining three parameters are
given by developments (11) and (13). Elements of the precession

matrix can then be computed from

P11 = cosχA cosψA + sin χA cosωA sinψA,

P12 = (− cosχA sinψA + sin χA cosωA cosψA) cos ε0

+ sinχA sinωA sin ε0,

P13 = (− cosχA sinψA + sin χA cosωA cosψA) sin ε0

− sinχA sinωA cos ε0, (20)

P21 = − sinχA cosψA + cosχA cosωA sinψA,

P22 = (sinχA sinψA + cosχA cosωA cosψA) cos ε0

+ cosχA sinωA sin ε0,

P23 = (sinχA sinψA + cosχA cosωA cosψA) sin ε0

− cosχA sinωA cos ε0,

P31 = sinωA sinψA,

P32 = sinωA cosψA cos ε0 − cosωA sin ε0,

P33 = sinωA cosψA sin ε0 + cosωA cos ε0.

5.3. Matrix using the precession of the equator relative
to the moving ecliptic

An alternative parameterization was proposed by Williams
(1994) and Fukushima (2003). It is comprised of a sequence of
four rotations: by γ around the z-axis, by ϕ around the x-axis, by
−ψ around the z-axis, and by −εA around the x-axis (the first one
describing the precession of the ecliptic, the last three precession
of the equator relative to the moving ecliptic), i.e.

P = R1(−εA)R3(−ψ)R1(ϕ)R3(γ), (21)

where the expressions to compute parameter εA are given by
Eq. (10), ψ by Eq. (15), and ϕ, γ by Eqs. (14). The elements
of matrix P can then be calculated as

P11 = cosψ cos γ + sinψ cosϕ sin γ,

P12 = cosψ sin γ − sinψ cosϕ cos γ,

P13 = − sinψ sin ϕ, (22)

P21 = cos εA sinψ cosγ − (cos εA cosψ cosϕ + sin εA sin ϕ) sin γ,

P22 = cos εA sinψ sin γ + (cos εA cosψ cosϕ + sin εA sin ϕ) cosγ,

P23 = cos εA cosψ sinϕ − sin εA cosϕ,

P31 = sin εA sinψ cos γ − (sin εA cosψ cosϕ − cos εA sin ϕ) sin γ,

P32 = sin εA sinψ sin γ + (sin εA cosψ cosϕ − cos εA sin ϕ) cosγ,

P33 = sin εA cosψ sin ϕ + cos εA cosϕ.

5.4. Matrix based on the ecliptic and mean equator poles

Fabri (1980) bypassed the conventional precession angles, and
derived polynomials to deliver directly the two unit vectors rep-
resenting the ecliptic and mean equator poles. Murray (1983,
Sect. 5.4.2), used these vectors to generate the precession ma-
trix:

P =

⎛
⎜⎜⎜⎜⎜⎜⎝
〈n̄× k〉

n̄× 〈n̄× k〉
n̄

⎞
⎟⎟⎟⎟⎟⎟⎠ (23)

where the vectors k and n̄ are the ecliptic pole and mean equa-
tor pole, respectively. In the Appendix we provide two computer
subroutines, ltp_PECL and ltp_PEQU, to generate the two vec-
tors (with respect to the J2000.0 equator and equinox), and in a
third, ltp_PMAT, we use them to generate the precession matrix.
A fourth subroutine, ltp_PBMAT, applies a small rotation (the
“frame bias”) to the matrix, for use when the starting vector is
with respect to the GCRS.
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Fig. 10. Locator sA due to precession – new model and integrated values
(solid), IAU2006 (dashed).

5.5. Matrix for the precession of the equator

In 2000/2003, the IAU introduced a new zero point for right as-
cension. The celestial intermediate origin (CIO) is a kinemati-
cally defined point that has no connection with equinox or eclip-
tic. Its use has the advantage that precession-nutation and Earth
rotation are kept separate, and in particular means that sidereal
time is replaced by Earth rotation angle (ERA), which is simply
a linear transformation of UT1. It also means that precession-
nutation is defined only by the motion of the celestial pole
(cf. Sect. 6), which can be taken into account by the GCRS coor-
dinates of the CIP unit vector, and consequently that we can con-
struct a precession matrix using only the XA, YA series, Eq. (9).
Using Capitaine & Wallace (2006), Eqs. (3)–(5), and neglect-
ing nutation and bias, the rotation matrix from GCRS to current
coordinates can be written as:

PCIO = R3(−sA) ·
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 − aX2
A −aXAYA −XA

−aXAYA 1 − aY2
A −YA

XA YA ZA

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ , (24)

with

a = 1/(1 + ZA). (25)

The quantity sA is derived from the kinematical definition of
the CIO and involves an integral: Capitaine & Wallace (2006),
Sect. 4, describe methods to do this. The development of sA de-
rived from the expressions for XA and YA (Eq. (9)) must be taken
into account for measuring the ERA in the long term. It is ap-
proximated by Eq. (26), in which

∑
s is the periodic part, given

in Table 9,

sA = 3566.723572− 414.3015011T (26)

+0.00085448T 2 + 365 × 10−9T 3 +
∑

s.

The comparison of the long-term model of locator sA with its
IAU 2006 value, after a nominal reduction by −413′′/cy, is
shown in Fig. 10. The complete value of s can be obtained by
adding the effects of nutation, which consist of a small negative
linear term plus a short-periodic part, the amplitude of which
does not exceed a few arcseconds.

In contrast, only the second part of the matrix product in
Eq. (24) is necessary to provide the celestial pole. Writing
Eq. (24) as

PCIO = R3(−sA) · PΣ (27)

defines Σ as the point on the mean equator such that ΥoN =
ΣN, N being the node of the mean equator of date on the mean
equator at J2000.0. PΣ can be expressed in terms of unit row
vectors:

PΣ ≡
⎛
⎜⎜⎜⎜⎜⎜⎝
uΣ

n̄× uΣ
n̄

⎞
⎟⎟⎟⎟⎟⎟⎠ , (28)

Table 9. Periodic terms in sA.

Term C/S sA[′′] P[cy]
p C1 861.759585 256.75

S 1 17367.906013
p + σ3 C2 –3534.781660 402.79

S 2 –206.865955
−σ3 C3 –1757.969632 708.15

S 3 937.453020
p + s1 C4 –379.971514 288.92

S 4 794.788562
p − g2 + g5 C5 808.400066 274.20

S 5 101.350197
p + s6 C6 528.646661 537.22

S 6 –509.801031
p + g2 − g5 C7 566.991239 241.45

S 7 –302.310637
−s4 C8 –164.251097 729.81

S 8 –538.092166
C9 239.102099 483.00
S 9 383.848135
C10 –239.146933 438.22
S 10 –373.925805
C11 –61.768986 128.38
S 11 –344.946642
C12 –279.716974 1552.00
S 12 –85.660616

2g2 − 2g5 C13 –96.750819 2022.00
S 13 –132.781674
C14 –57.265608 230.44
S 14 38.452480

which identifies the top row of the PΣ matrix as the Σ vector,
the bottom row as the mean equator pole vector and the middle
row as the corresponding y-axis. As the point Σ is independent
of the motion of the ecliptic, the matrix PΣ represents only the
precession of the equator.

6. Accuracy comparisons

The ecliptic part of a precession model is essentially a mat-
ter of convention, and hence the position of the equinox is as
well. In fact the position of the zero point of right ascension
is irrelevant for many historical studies, because star visibili-
ties and alignments (rise azimuth for example) depend only on
the celestial pole. Consequently, most of the comparisons be-
low (Sects. 6.1 to 6.4) are based solely on the angular separa-
tion between the given equator pole and that predicted by the
XA, YA model (Eq. (9)), as implemented in the ltp_PEQU sub-
routine (Sect. A.2). However, for the comparison between the
new precession model and reality (Sect. 6.5), we consider both
the ecliptic and the equator.

6.1. New model versus numerical integration

Figure 11 summarizes how well the new model fits the numerical
integrations (and IAU 2006 in the vicinity of J2000), based on
the RMS accuracies for the individual parameters. The average
RMS unit-weight error for all parameters was used, in combi-
nation with individual weights at different epochs, to compute
the plot. The upper plot shows the full time span, the lower one
holds for the central ±10 millennia.
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Fig. 11. Overall agreement between the new model and the numerical
integration.

Fig. 12. New-model poles compared, using Eq. (9) as the reference
model.

6.2. Internal consistency of new model

The series given earlier provide not just one precession model,
but a choice of several. Each relies on series that have been inde-
pendently fitted to the numerical integrations, and so each can be
expected to behave differently in some respects. It is reasonable
to expect the different parameterizations to deliver the accuracies
suggested by Fig. 11, but at the same time the statistical basis of
each fit is the angle being fitted, not the consequences on the sky,
and so differences in character can be expected.

Figure 12 compares the results from three parameterizations,
with the ltp_PEQU subroutine (which uses the XA, YA param-
eterization) used as the reference model. The solid line is for
the ε0, ψA, ωA, χA method. The dotted line is for the ζA, θA, zA
method, these angles being deduced from VA,WA, XA, YA. The
dashed line is for the γ, ϕ, ψ, ε0 method.

All of the parameterizations agree well within a few millen-
nia of J2000.0, and are broadly consistent with the error esti-
mates given above over most of the time span. At the most ex-
treme epochs the γ, ϕ, ψ, ε0 and XA, YA methods agree less well.

Fig. 13. Comparison of Eq. (9) pole with other models, medium-term.

Fig. 14. Comparison of Eq. (9) pole with IAU 2006, short-term.

The sporadic improvements in the ζA, θA, zA case are probably
because it and the reference method both use the XA, YA series
as a basis.

6.3. Comparisons with existing formulations

Figure 13 compares the ltp_PMAT pole and several standard
precession models, past and present, over a time interval that
is slightly more than one precessional cycle. The dotted line
shows the differences with respect to the IAU 1976 model, which
uses the ζA, θA, zA parameterization. The finer of the two dashed
lines is for the IAU 2000 model, using the ε0, ψA, ωA, χA pa-
rameterization, where ψA and ωA are from Lieske et al. 1977
with the IAU 2000 rate adjustments added. The solid line is the
IAU 2006 model, implemented using the ε0, ψA, ωA, χA param-
eterization (and in fact giving almost exactly the same perfor-
mance as IAU 1976 in the millennia of most historical interest).
The coarser of the two dashed lines is also the IAU 2006 preces-
sion, but using direct series for CIP XA, YA, which are develop-
ments of the coordinates of the pole unit vector in the mean equa-
tor and equinox frame of epoch as polynomial of time around
J2000.0; this method (denoted “IERS” in Fig. 13) combines pre-
cision and convenience in the modern era, but is not intended for
remote epochs.

6.4. New model versus IAU 2006, short term

Figure 14 compares the ltp_PMAT pole with the IAU 2006
model (via ε0, ψA, ωA, χA), for 2000 years centered on J2000.
The central portion of the plot shows that replacing the preces-
sion portion of the IAU 2006/2000A CIP model would lead to
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changes in the 20th and 21st centuries that are rather less than
100 μas (comparable with current VLBI uncertainties) and may
be acceptable in some multi-purpose computer applications.

6.5. New model versus reality

The evaluation of the accuracy of a model requires comparison
with real observations. However, this is possible only for recent
epochs, when precise observations are available. In the case of
the precession models developed in this paper, the accuracy in
the vicinity of J2000.0 has been ensured by the use, inside the
interval ±1000 years around that epoch, of the IAU 2006 pre-
cession model, the basic constants of which were fitted to the
DE406 ephemerides for the ecliptic and to VLBI observations
for the equator. The long-term accuracy can be evaluated by
comparison with other numerical integrations. This is possible
for the motion of the ecliptic, for which independent integrated
solutions exist (La93 and La2004 from Laskar et al. 1993; and
2004, respectively). The good consistency with the La93 solu-
tion for the ecliptic has been reported in Sect. 2.1. Note that, as
the La2004 and La93 ecliptic solutions are nearly identical over
±200 millennia from J2000.0, this property is also valid with the
La2004 solution.

For the equator, a comparison of the long term expression
(Eq. (10)) for εA with the corresponding independent La2004 in-
tegrated solution shows discrepancies that are below 0.1′′ around
the central J2000.0 epoch and reach about 200′′ for the most
distant epochs. A similar comparison cannot be performed for
the precession quantity pA, the La2004 solution of which is not
available; however, an evaluation of the uncertainty can be re-
flected through the differences between two forms of the La93
solutions based on different tidal dissipation values, which ap-
pear to be within an order of magnitude of the discrepancies re-
ported above for εA.

Another way to evaluate the accuracy is to evaluate the pos-
sible errors in the integration, i.e. both the accumulated errors in
the long term integration and the expected uncertainties in the
initial conditions and the numerical values of key parameters of
the models upon which the solutions are based. The most im-
portant uncertainties for representing the EMB orbital angular
momentum in the long term concern the physical parameters in
the solar system and the knowledge of the model which is in-
evitably imperfect.

The most important uncertainties for the precession of the
equator are in the change in the Earth’s dynamical ellipticity (or
equivalently the dynamical form factor J2) and in the evolution
of the dissipative effects, especially the tidal dissipation in the
Earth-Moon system and the corresponding evolution of the or-
bit of the Moon. Note in particular that, even if the IAU 2006
values for dJ2/dt and the tidal dissipation are in agreement with
the values derived from long term studies of the Earth rotation
variations by Morrison & Stephenson (1997), based upon eclipse
data over two millennia, the predictive knowledge of those val-
ues cannot be extended to a time span 200 times longer without
increasing considerably the uncertainty.

7. Conclusions

The present study provides precession expressions that
are appropriate for multi-purpose applications covering the
±200 millennia time span around J2000.0. These expressions are
based on the IAU 2006 solutions close to J2000.0 and, for more
distant epochs, a numerically integrated solution, made using the
Mercury 6 package (Chambers 1999) to represent the ecliptic
and La93 (Laskar et al. 1993) solution with upgraded constants,
to represent general precession and obliquity. From them, dif-
ferent precession parameters have been calculated in the inter-
val ±200 millennia from J2000.0, and analytical approximations
have been found to obtain a good fit for the whole interval. The
precession of the equator and the precession of the ecliptic have
been clearly distinguished, by providing separately the expres-
sions for the “primary precession parameters” (PA,QA for the
ecliptic and XA, YA for the equator) that are sufficient to obtain
the directions of the ecliptic pole and equator pole, respectively,
in a fixed reference frame. Expressions for a number of other
precession quantities have also been provided, to support vari-
ous other kinds of calculations.

We have shown that these precession expressions, each of
which comprises a cubic polynomial plus from 8 to 14 periodic
terms, allow precession to be computed with accuracy compa-
rable to IAU 2006 around the central epoch J2000.0, to a few
arcseconds throughout the historical period, and to better than a
degree at the ends of the ±200 millennia time span.

Software is provided that computes the ecliptic and mean
equator poles, and the classical precession matrix.
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Appendix: Implementation in software

Here we present four computer subroutines that implement the long-term precession model. The chosen parameterization is PA,QA
for the ecliptic pole and XA, YA for the equator pole. These results enable the precession matrix P to be computed. Two versions
of the precession matrix are presented, the first for use with J2000.0 mean place and the second for use with Geocentric Celestial
Reference System (GCRS) coordinates. Fortran code is used; implementations in other languages would be along very similar lines.
The time argument for all four subroutines is Julian epoch (TT).

A.1. Precession of the ecliptic

The Fortran subroutine ltp_PECL generates the unit vector for the pole of the ecliptic, using the series for PA,QA (Eq. (8) and
Table 1):

SUBROUTINE ltp_PECL ( EPJ, VEC )
*+
* - - - - -
* P E C L
* - - - - -
*
* Long-term precession of the ecliptic.
*
* Given:
* EPJ d Julian epoch (TT)
*
* Returned:
* VEC d ecliptic pole unit vector
*
* The vector is with respect to the J2000.0 mean equator and equinox.
*
* Reference: Vondrak et al., A&A (2011), Eq.8, Tab.1
*
* Date: 2011 May 14
*
* Authors: J.Vondrak, N.Capitaine, P.Wallace
*
*-----------------------------------------------------------------------

IMPLICIT NONE
DOUBLE PRECISION EPJ, VEC(3)

* Arcseconds to radians
DOUBLE PRECISION AS2R
PARAMETER ( AS2R = 4.848136811095359935899141D-6 )

* 2Pi
DOUBLE PRECISION D2PI
PARAMETER ( D2PI = 6.283185307179586476925287D0 )

* Obliquity at J2000.0 (radians).
DOUBLE PRECISION EPS0
PARAMETER ( EPS0 = 84381.406D0 * AS2R )

* Number of polynomial terms
INTEGER NPOL
PARAMETER ( NPOL = 4 )

* Number of periodic terms
INTEGER NPER
PARAMETER ( NPER = 8 )

* Miscellaneous
INTEGER I, J
DOUBLE PRECISION T, P, Q, W, A, S, C, Z
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* Polynomial and periodic coefficients
DOUBLE PRECISION PQPOL(NPOL,2), PQPER(5,NPER)

* Polynomials
DATA ((PQPOL(I,J),I=1,NPOL),J=1,2) /
:
: +5851.607687 D0,
: -0.1189000 D0,
: -0.00028913 D0,
: +0.000000101 D0,
:
: -1600.886300 D0,
: +1.1689818 D0,
: -0.00000020 D0,
: -0.000000437 D0 /

* Periodics
DATA ((PQPER(I,J),I=1,5),J=1,NPER) /

:
: 708.15D0, -5486.751211D0, -684.661560D0,
: 667.666730D0, -5523.863691D0,
: 2309.00D0, -17.127623D0, 2446.283880D0,
: -2354.886252D0, -549.747450D0,
: 1620.00D0, -617.517403D0, 399.671049D0,
: -428.152441D0, -310.998056D0,
: 492.20D0, 413.442940D0, -356.652376D0,
: 376.202861D0, 421.535876D0,
: 1183.00D0, 78.614193D0, -186.387003D0,
: 184.778874D0, -36.776172D0,
: 622.00D0, -180.732815D0, -316.800070D0,
: 335.321713D0, -145.278396D0,
: 882.00D0, -87.676083D0, 198.296071D0,
: -185.138669D0, -34.744450D0,
: 547.00D0, 46.140315D0, 101.135679D0,
: -120.972830D0, 22.885731D0 /

* Centuries since J2000.
T = (EPJ-2000D0)/100D0

* Initialize P_A and Q_A accumulators.
P = 0D0
Q = 0D0

* Periodic terms.
DO I=1,NPER
W = D2PI*T
A = W/PQPER(1,I)
S = SIN(A)
C = COS(A)
P = P + C*PQPER(2,I) + S*PQPER(4,I)
Q = Q + C*PQPER(3,I) + S*PQPER(5,I)

END DO

* Polynomial terms.
W = 1D0
DO I=1,NPOL
P = P + PQPOL(I,1)*W
Q = Q + PQPOL(I,2)*W
W = W*T

END DO

* P_A and Q_A (radians).
P = P*AS2R
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Q = Q*AS2R

* Form the ecliptic pole vector.
Z = SQRT(MAX(1D0-P*P-Q*Q,0D0))
S = SIN(EPS0)
C = COS(EPS0)
VEC(1) = P
VEC(2) = - Q*C - Z*S
VEC(3) = - Q*S + Z*C

END

A.2. Precession of the equator

The Fortran subroutine ltp_PEQU generates the unit vector for the pole of the equator, using the series for XA, YA (Eq. (9) and
Table 2):

SUBROUTINE ltp_PEQU ( EPJ, VEQ )
*+
* - - - - -
* P E Q U
* - - - - -
*
* Long-term precession of the equator.
*
* Given:
* EPJ d Julian epoch (TT)
*
* Returned:
* VEQ d equator pole unit vector
*
* The vector is with respect to the J2000.0 mean equator and equinox.
*
* Reference: Vondrak et al., A&A (2011), Eq.9, Tab.2
*
* Date: 2011 May 14
*
* Authors: J.Vondrak, N.Capitaine, P.Wallace
*
*-----------------------------------------------------------------------

IMPLICIT NONE
DOUBLE PRECISION EPJ, VEQ(3)

* Arcseconds to radians
DOUBLE PRECISION AS2R
PARAMETER ( AS2R = 4.848136811095359935899141D-6 )

* 2Pi
DOUBLE PRECISION D2PI
PARAMETER ( D2PI = 6.283185307179586476925287D0 )

* Number of polynomial terms
INTEGER NPOL
PARAMETER ( NPOL = 4 )

* Number of periodic terms
INTEGER NPER
PARAMETER ( NPER = 14 )

* Miscellaneous
INTEGER I, J
DOUBLE PRECISION T, X, Y, W, A, S, C
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* Polynomial and periodic coefficients
DOUBLE PRECISION XYPOL(NPOL,2), XYPER(5,NPER)

* Polynomials
DATA ((XYPOL(I,J),I=1,NPOL),J=1,2) /
:
: +5453.282155 D0,
: +0.4252841 D0,
: -0.00037173 D0,
: -0.000000152 D0,
:
: -73750.930350 D0,
: -0.7675452 D0,
: -0.00018725 D0,
: +0.000000231 D0 /

* Periodics
DATA ((XYPER(I,J),I=1,5),J=1,NPER) /

:
: 256.75D0, -819.940624D0, 75004.344875D0,
: 81491.287984D0, 1558.515853D0,
: 708.15D0, -8444.676815D0, 624.033993D0,
: 787.163481D0, 7774.939698D0,
: 274.20D0, 2600.009459D0, 1251.136893D0,
: 1251.296102D0, -2219.534038D0,
: 241.45D0, 2755.175630D0, -1102.212834D0,
: -1257.950837D0, -2523.969396D0,
: 2309.00D0, -167.659835D0, -2660.664980D0,
: -2966.799730D0, 247.850422D0,
: 492.20D0, 871.855056D0, 699.291817D0,
: 639.744522D0, -846.485643D0,
: 396.10D0, 44.769698D0, 153.167220D0,
: 131.600209D0, -1393.124055D0,
: 288.90D0, -512.313065D0, -950.865637D0,
: -445.040117D0, 368.526116D0,
: 231.10D0, -819.415595D0, 499.754645D0,
: 584.522874D0, 749.045012D0,
: 1610.00D0, -538.071099D0, -145.188210D0,
: -89.756563D0, 444.704518D0,
: 620.00D0, -189.793622D0, 558.116553D0,
: 524.429630D0, 235.934465D0,
: 157.87D0, -402.922932D0, -23.923029D0,
: -13.549067D0, 374.049623D0,
: 220.30D0, 179.516345D0, -165.405086D0,
: -210.157124D0, -171.330180D0,
: 1200.00D0, -9.814756D0, 9.344131D0,
: -44.919798D0, -22.899655D0 /

* Centuries since J2000.
T = (EPJ-2000D0)/100D0

* Initialize X and Y accumulators.
X = 0D0
Y = 0D0

* Periodic terms.
DO I=1,NPER
W = D2PI*T
A = W/XYPER(1,I)
S = SIN(A)
C = COS(A)
X = X + C*XYPER(2,I) + S*XYPER(4,I)
Y = Y + C*XYPER(3,I) + S*XYPER(5,I)
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END DO

* Polynomial terms.
W = 1D0
DO I=1,NPOL
X = X + XYPOL(I,1)*W
Y = Y + XYPOL(I,2)*W
W = W*T

END DO

* X and Y (direction cosines).
X = X*AS2R
Y = Y*AS2R

* Form the equator pole vector.
VEQ(1) = X
VEQ(2) = Y
W = X*X + Y*Y
IF ( W.LT.1D0 ) THEN
VEQ(3) = SQRT(1D0-W)

ELSE
VEQ(3) = 0D0

END IF

END

A.3. Precession matrix, mean J2000.0

The Fortran subroutine ltp_PMAT generates the 3× 3 rotation matrix P, constructed using Fabri parameterization (i.e. directly from
the unit vectors for the ecliptic and equator poles – see Sect. 5.4). As well as calling the two previous subroutines, ltp_PMAT calls
subroutines from the IAU SOFA library.1 The resulting matrix transforms vectors with respect to the mean equator and equinox of
epoch 2000.0 into mean place of date.

SUBROUTINE ltp_PMAT ( EPJ, RP )
*+
* - - - - -
* P M A T
* - - - - -
*
* Long-term precession matrix.
*
* Given:
* EPJ d Julian epoch (TT)
*
* Returned:
* RP d precession matrix, J2000.0 to date
*
* The matrix is in the sense
*
* P_date = RP x P_J2000,
*
* where P_J2000 is a vector with respect to the J2000.0 mean
* equator and equinox and P_date is the same vector with respect to
* the equator and equinox of epoch EPJ.
*
* Called:
* ltp_PEQU equator pole
* ltp_ECL ecliptic pole
* iau_PXP vector product (SOFA)
* iau_PN normalize vector (SOFA)
*
* Reference: Vondrak et al., A&A (2011), Eq.23

1 See www.iausofa.org.
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*
* Date: 2011 April 30
*
* Authors: J.Vondrak, N.Capitaine, P.Wallace
*
*-----------------------------------------------------------------------

IMPLICIT NONE
DOUBLE PRECISION EPJ, RP(3,3)

DOUBLE PRECISION PEQR(3), PECL(3), V(3), W, EQX(3)

* Equator pole (bottom row of matrix).
CALL ltp_PEQU ( EPJ, PEQR )

* Ecliptic pole.
CALL ltp_PECL ( EPJ, PECL )

* Equinox (top row of matrix).
CALL iau_PXP ( PEQR, PECL, V )
CALL iau_PN ( V, W, EQX )

* Middle row of matrix.
CALL iau_PXP ( PEQR, EQX, V )

* The matrix elements.
RP(1,1) = EQX(1)
RP(1,2) = EQX(2)
RP(1,3) = EQX(3)
RP(2,1) = V(1)
RP(2,2) = V(2)
RP(2,3) = V(3)
RP(3,1) = PEQR(1)
RP(3,2) = PEQR(2)
RP(3,3) = PEQR(3)

END

A.4. Precession matrix, GCRS

The Fortran subroutine ltp_PBMAT generates the 3 × 3 rotation matrix P × B, where B is the “frame bias matrix” that expresses
the relative orientation of the GCRS and mean J2000.0 reference systems. A simple first-order implementation of the frame bias is
used, the departure from rigor being well under 1 μas.

SUBROUTINE ltp_PBMAT ( EPJ, RPB )
*+
* - - - - - -
* P B M A T
* - - - - - -
*
* Long-term precession matrix, including GCRS frame bias.
*
* Given:
* EPJ d Julian epoch (TT)
*
* Returned:
* RPB d precession-bias matrix, J2000.0 to date
*
* The matrix is in the sense
*
* P_date = RPB x P_J2000,
*
* where P_J2000 is a vector in the Geocentric Celestial Reference
* System, and P_date is the vector with respect to the Celestial
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* Intermediate Reference System at that date but with nutation
* neglected.
*
* A first order bias formulation is used, of sub-microarcsecond
* accuracy compared with a full 3D rotation.
*
* Called:
* ltp_PMAT precession matrix
*
* Reference: Vondrak et al., A&A (2011), Section A.4.
*
* Date: 2011 April 30
*
* Authors: J.Vondrak, N.Capitaine, P.Wallace
*
*-----------------------------------------------------------------------

IMPLICIT NONE
DOUBLE PRECISION EPJ, RPB(3,3)

* Arcseconds to radians
DOUBLE PRECISION AS2R
PARAMETER ( AS2R = 4.848136811095359935899141D-6 )

* Frame bias (IERS Conventions 2010, Eqs. 5.21 and 5.33)
DOUBLE PRECISION DX, DE, DR
PARAMETER ( DX = -0.016617D0 * AS2R,
: DE = -0.0068192D0 * AS2R,
: DR = -0.0146D0 * AS2R )

DOUBLE PRECISION RP(3,3)

* Precession matrix.
CALL ltp_PMAT ( EPJ, RP )

* Apply the bias.
RPB(1,1) = RP(1,1) - RP(1,2)*DR + RP(1,3)*DX
RPB(1,2) = RP(1,1)*DR + RP(1,2) + RP(1,3)*DE
RPB(1,3) = - RP(1,1)*DX - RP(1,2)*DE + RP(1,3)
RPB(2,1) = RP(2,1) - RP(2,2)*DR + RP(2,3)*DX
RPB(2,2) = RP(2,1)*DR + RP(2,2) + RP(2,3)*DE
RPB(2,3) = - RP(2,1)*DX - RP(2,2)*DE + RP(2,3)
RPB(3,1) = RP(3,1) - RP(3,2)*DR + RP(3,3)*DX
RPB(3,2) = RP(3,1)*DR + RP(3,2) + RP(3,3)*DE
RPB(3,3) = - RP(3,1)*DX - RP(3,2)*DE + RP(3,3)

END

A.5. Test case

To assist in checking for correct use of the above subroutines, we present below the results of calling each of them for the following
test date: –1374 (i.e. 1375 BCE) May 3 (Gregorian calendar) at 13:52:19.2 TT. The equivalent Julian date and Julian epoch are
1219339.078000 (TT) and −1373.5959534565 (TT) respectively.

Calling ltp_PECL gives the following ecliptic pole (with respect to the J2000.0 mean equator and equinox):

pecl = ( +0.00041724785764001342 −0.40495491104576162693 +0.91433656053126552350 ) (A.1)

Calling ltp_PEQU gives the following equator pole (with respect to the J2000.0 mean equator and equinox):

pequ = ( −0.29437643797369031532 −0.11719098023370257855 +0.94847708824082091796 ) (A.2)
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Calling ltp_PMAT gives the following precession matrix (mean equator and equinox of J2000.0 to mean equator and equinox of
date):

Rp =

⎛
⎜⎜⎜⎜⎜⎜⎝
+0.68473390570729557360+ 0.66647794042757610444+ 0.29486714516583357655
−0.66669482609418419936+ 0.73625636097440967969− 0.11595076448202158534
−0.29437643797369031532− 0.11719098023370257855+ 0.94847708824082091796

⎞
⎟⎟⎟⎟⎟⎟⎠ (A.3)

Calling ltp_PECL gives the following bias+ precession matrix (Geocentric Celestial Reference System to a precession-only variant
of the Celestial Intermediate Reference System of date):

Rp×b =

⎛
⎜⎜⎜⎜⎜⎜⎝
+0.68473392912753224372+ 0.66647788221176470103+ 0.29486722236305384992
−0.66669476463873305255+ 0.73625641199831485100− 0.11595079385100924091
−0.29437652267952261218− 0.11719099075396051880+ 0.94847706065103424635

⎞
⎟⎟⎟⎟⎟⎟⎠ . (A.4)

The above computations were performed using quadruple precision (REAL*128) so that all the reported decimals (except perhaps
for the least significant digit in rare critical cases) are correct. Note that on typical computers ordinary double precision has only
15–16 decimal places of precision, and this must be taken into account when comparing results.
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e-mail: vondrak@ig.cas.cz

2 SYRTE, Observatoire de Paris, CNRS, UPMC, 61 avenue de l’Observatoire, 75014 Paris, France
e-mail: n.capitaine@obspm.fr

3 STFC/Rutherford Appleton Laboratory, Harwell Oxford, Oxon OX11 0QX, UK
e-mail: patrick.wallace@stfc.ac.uk

A&A 534, A22 (2011), DOI: 10.1051/0004-6361/201117274

Key words. astrometry – ephemerides – reference systems – errata, addenda

There is a typographical error in Table 1; coefficient C7
for QA should read 198.296701 instead of 198.296071. The
same error is present in the Fortran subroutine ltp_PECL in

Appendix A.1. This error does not affect any other expression
provided in the paper. We thank Jean-Marc Baillard for bringing
this error to our attention.
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